Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal.
نویسندگان
چکیده
Nacre is an exquisitely structured biocomposite of the calcium carbonate mineral aragonite with small amounts of proteins and the polysaccharide chitin. For many years, it has been the subject of research, not just because of its beauty, but also to discover how nature can produce such a superior product with excellent mechanical properties from such relatively weak raw materials. Four decades ago, Wada [Wada K (1966) Spiral growth of nacre. Nature 211:1427] proposed that the spiral patterns in nacre could be explained by using the theory Frank [Frank F (1949) The influence of dislocations on crystal growth. Discuss Faraday Soc 5:48-54] had put forward of the growth of crystals by means of screw dislocations. Frank's mechanism of crystal growth has been amply confirmed by experimental observations of screw dislocations in crystals, but it is a growth mechanism for a single crystal, with growth fronts of molecules. However, the growth fronts composed of many tablets of crystalline aragonite visible in micrographs of nacre are not a molecular-scale but a mesoscale phenomenon, so it has not been evident how the Frank mechanism might be of relevance. Here, we demonstrate that nacre growth is organized around a liquid-crystal core of chitin crystallites, a skeleton that the other components of nacre subsequently flesh out in a process of hierarchical self-assembly. We establish that spiral and target patterns can arise in a liquid crystal formed layer by layer through the Burton-Cabrera-Frank [Burton W, Cabrera N, Frank F (1951) The growth of crystals and the equilibrium structure of their surfaces. Philos Trans R Soc London Ser A 243:299-358] dynamics, and furthermore that this layer growth mechanism is an instance of an important class of physical systems termed excitable media. Artificial liquid crystals grown in this way may have many technological applications.
منابع مشابه
Crystal growth as an excitable medium.
Crystal growth has been widely studied for many years, and, since the pioneering work of Burton, Cabrera and Frank, spirals and target patterns on the crystal surface have been understood as forms of tangential crystal growth mediated by defects and by two-dimensional nucleation. Similar spirals and target patterns are ubiquitous in physical systems describable as excitable media. Here, we demo...
متن کاملPolarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure
The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the e...
متن کاملOrganization pattern of nacre in Pteriidae (Bivalvia: Mollusca) explained by crystal competition.
Bivalve nacre is a brick-wall-patterned biocomposite of aragonite platelets surrounded by organic matter. SEM-electron back scatter diffraction analysis of nacre of the bivalve family Pteriidae reveals that early aragonite crystals grow with their c-axes oriented perpendicular to the growth surface but have their a- and b-axes disoriented. With the accumulation of successive lamellae, crystals ...
متن کاملCharacterization and Investigation of Grain Selection in Spiral Grain Selectors during Casting Single-Crystal Turbine Blades
Manufactured single crystal components using Ni-base super alloys are routinely used in the hot sections of aero engines and industrial gas turbines due to their outstanding high temperature strength, toughness and resistance to degradation in corrosive and oxidative environments. To control the quality of the single crystal turbine blades, particular attention has been paid to grain selection,...
متن کاملOrganic–inorganic interfaces and spiral growth in nacre
Nacre, the crown jewel of natural materials, has been extensively studied owing to its remarkable physical properties for over 160 years. Yet, the precise structural features governing its extraordinary strength and its growth mechanism remain elusive. In this paper, we present a series of observations pertaining to the red abalone (Haliotis rufescens) shell's organic-inorganic interface, organ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 26 شماره
صفحات -
تاریخ انتشار 2009